Exercises to Relativistic Quantum Field Theory — Sheet 8 — Prof. S. Dittmaier, Universität Freiburg, SS18 —

Exercise 8.1 S-operator for two interacting scalar fields (cont'd) (1 point)

Consider again the field theory of a complex scalar field ϕ (particle ϕ and antiparticle ϕ) and a real scalar field Φ (particle Φ) from Exercise 7.2 with the Lagrangian density

$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} \Phi) (\partial^{\mu} \Phi) - \frac{1}{2} M^2 \Phi^2 + (\partial_{\mu} \phi^{\dagger}) (\partial^{\mu} \phi) - m^2 \phi^{\dagger} \phi + \mathcal{L}_{\text{int}},$$

where $\mathcal{L}_{int} = \lambda \phi^{\dagger} \phi \Phi$, and make use of the perturbative expansion worked out there.

- a) Calculate the S-matrix element $S_{fi} = \langle f|S|i\rangle$ in lowest order between the initial state $|i\rangle = a_{\Phi}^{\dagger}(k)|0\rangle$ and the final state $|f\rangle = a_{\phi}^{\dagger}(p_1) b_{\phi}^{\dagger}(p_2)|0\rangle$, where $a_{\Phi}^{\dagger}(q)$, $a_{\phi}^{\dagger}(q)$, $b_{\phi}^{\dagger}(q)$ are the creation operators of the particles Φ , ϕ , and $\bar{\phi}$.
- b) Assuming M > 2m, calculate the lowest-order decay width

$$\Gamma_{\Phi \to \phi \bar{\phi}} = \frac{1}{2M} \int \mathrm{d}\Phi_2 \, |\mathcal{M}_{fi}|^2$$

for the decay $\Phi \to \phi \bar{\phi}$, where Φ_2 is the 2-particle phase space of the final state (see Exercise 5.2) and the transition matrix element \mathcal{M}_{fi} is related to S_{fi} by

$$S_{fi} = (2\pi)^4 \delta(k - p_1 - p_2) \, i \mathcal{M}_{fi}.$$

Exercise 8.2 Fundamental representations of the Lorentz group (1 point)

The general form of Lorentz transformations in the two fundamental representations of the Lorentz group is given by

$$\Lambda_{\rm R} = \exp\left(-\frac{\mathrm{i}}{2}\sum_{k=1}^{3}(\phi_k + i\nu_k)\sigma^k\right), \qquad \Lambda_{\rm L} = \exp\left(-\frac{\mathrm{i}}{2}\sum_{k=1}^{3}(\phi_k - i\nu_k)\sigma^k\right)$$

with the real group parameters ϕ_k , ν_k and the Pauli matrices σ^k .

- a) Show that $\Lambda_{\rm R}^{\dagger} = \Lambda_{\rm L}^{-1}$ and $\Lambda_{\rm L}^{\dagger} = \Lambda_{\rm R}^{-1}$.
- b) Show that $\det(\Lambda_{\mathbf{R}}) = \det(\Lambda_{\mathbf{L}}) = 1$ using $\det(\exp\{A\}) = \exp\{\operatorname{Tr}(A)\}$ for a matrix A.
- c) Which transformations are characterized by $\Lambda_{R/L}^{\dagger} = \Lambda_{R/L}$, which by $\Lambda_{R/L}^{\dagger} = \Lambda_{R/L}^{-1}$?
- d) Derive $\Lambda_{\rm R}$ and $\Lambda_{\rm L}$ for a pure boost in the direction $\vec{e} = \begin{pmatrix} \cos \varphi \sin \theta \\ \sin \varphi \sin \theta \\ \cos \theta \end{pmatrix}$ with $\vec{\nu} = \nu \vec{e}$, $\vec{\phi} = 0$ and for a pure rotation around the axis \vec{e} with $\vec{\phi} = \phi \vec{e}$, $\vec{\nu} = 0$.

Please turn over!

Exercise 8.3 Connection between $\Lambda_{\rm R}$, $\Lambda_{\rm L}$, and $\Lambda^{\mu}_{\ \nu}$ (1 point)

The general matrix representing a Lorentz transformation of a four-vector is given by

$$\Lambda^{\mu}{}_{\nu} = \exp\left(-\frac{i}{2}\omega_{\alpha\beta}M^{\alpha\beta}\right)^{\mu}{}_{\nu}, \qquad (M^{\alpha\beta})^{\mu}{}_{\nu} = i(g^{\alpha\mu}g^{\beta}{}_{\nu} - g^{\beta\mu}g^{\alpha}{}_{\nu})$$

with the antisymmetric parameters $\omega_{jk} = \epsilon_{jkl}\phi_l$ and $\omega_{0j} = -\omega_{j0} = \nu_j$. The connection between $\Lambda_{\rm R}$, $\Lambda_{\rm L}$ (see Exercise 8.1) and Λ^{μ}_{ν} is

$$\Lambda^{\dagger}_{\rm R}\sigma^{\mu}\Lambda_{\rm R}=\Lambda^{\mu}_{\nu}\sigma^{\nu},\qquad\Lambda^{\dagger}_{\rm L}\bar{\sigma}^{\mu}\Lambda_{\rm L}=\Lambda^{\mu}_{\nu}\bar{\sigma}^{\nu},$$

where $\sigma^{\mu} = (\mathbb{1}, \sigma^1, \sigma^2, \sigma^3)$ and $\bar{\sigma}^{\mu} = (\mathbb{1}, -\sigma^1, -\sigma^2, -\sigma^3)$. Verify these relations for infinitesimal transformations with the parameters $\delta \phi_k$, $\delta \nu_k$.