Exercises to Relativistic Quantum Field Theory — Sheet 5 — Prof. S. Dittmaier, Universität Freiburg, SS18 —

Exercise 5.1 Momentum of the quantised free scalar field (1 point)

The energy P^0 and momentum \vec{P} of a free real scalar field $\phi(x)$ are determined by the energy-momentum tensor via

$$P^{0} = \int d^{3}y \, \frac{1}{2} \left[\pi(y)^{2} + (\nabla\phi(y))^{2} + m^{2}\phi(y)^{2} \right], \qquad \vec{P} = -\int d^{3}y \, \pi(y)(\nabla\phi(y)),$$

where $\pi(x) = \dot{\phi}(x)$ is the canonical conjugate operator to the field operator $\phi(x)$.

a) Using the canonical commutator relations, show that

$$[\phi(x), P^{\mu}] = i\partial^{\mu}\phi(x).$$

b) Derive the following identity for a translation by a constant 4-vector a^{μ} :

$$\exp(ia_{\mu}P^{\mu})\phi(x)\,\exp(-ia_{\nu}P^{\nu}) = \phi(x+a).$$

Exercise 5.2 2-particle phase space (1 point)

We consider two particles with masses $m_{1,2}$ and four-momenta $p_{1,2}$ $(p_{1,2}^2 = m_{1,2}^2)$. The total momentum is, thus, given by $k = p_1 + p_2$. The integral over the 2-particle phase space is defined as

$$\int \mathrm{d}\Phi_2 = \int \frac{\mathrm{d}^3 p_1}{(2\pi)^3 2 p_1^0} \int \frac{\mathrm{d}^3 p_2}{(2\pi)^3 2 p_2^0} (2\pi)^4 \delta^{(4)}(k-p_1-p_2) \bigg|_{p_{1,2}^0 = \sqrt{m_{1,2}^2 + \vec{p}_{1,2}^2}}.$$

a) Consider the decay of a particle of mass M and momentum k ($k^2 = M^2$) into two particles with momenta $p_{1,2}$. Show that the phase-space integral can be evaluated in the centre-of-mass frame as

$$\int \mathrm{d}\Phi_2 = \frac{1}{(2\pi)^2} \, \frac{\sqrt{\lambda(M^2, m_1^2, m_2^2)}}{8M^2} \, \theta(M - m_1 - m_2) \int \mathrm{d}\Omega_1,$$

where Ω_1 is the solid angle of particle 1, and $\lambda(x, y, z) = x^2 + y^2 + z^2 - 2xy - 2xz - 2yz$.

b) What is the phase-space integral of a $2 \rightarrow 2$ particle scattering reaction with incoming momenta $k_{1,2}$. What is the counterpart of M in this reaction? Consider the field operator $\phi(x)$ of the free complex Klein-Gordon field describing a spin-0 boson of mass m and electric charge q. The plane-wave expansion of $\phi(x)$ is given by

$$\phi(x) = \int d\tilde{p} \left(a(\vec{p}) e^{-ipx} + b^{\dagger}(\vec{p}) e^{ipx} \right),$$

where $a(\vec{p})$, $a^{\dagger}(\vec{p})$ are the annihilation and creation operators for the particle, respectively, and likewise $b(\vec{p})$, $b^{\dagger}(\vec{p})$ for the corresponding antiparticle. Express the charge operator

$$Q = \int d^3 \vec{x} \, iq \, : \left(\phi^{\dagger}(\partial_0 \phi) - (\partial_0 \phi)^{\dagger} \phi\right):$$

in terms of the annihilation and creation operators of the momentum eigenstates. The normal ordered form : \mathcal{O} : of an operator \mathcal{O} is defined in such a way that all annihilation operators a_i are to the right of all creation operators a_j^{\dagger} (e.g. : $a_i a_j^{\dagger} := :a_j^{\dagger} a_i := a_j^{\dagger} a_i)$.