Exercises to Relativistic Quantum Field Theory — Sheet 1 — Prof. S. Dittmaier, Universität Freiburg, SS18 —

Exercise 1.1 Some properties of Lorentz transformations (2 points)

Lorentz transformations, which transform a four-vector $a^{\mu} = (a^0, \vec{a})$ to $a'^{\mu} = \Lambda^{\mu}{}_{\nu}a^{\nu}$, comprise all 4×4 matrices Λ that leave the metric tensor $g^{\mu\nu} = \text{diag}(+1, -1, -1, -1)$ invariant, i.e. $g^{\mu\nu} = \Lambda^{\mu}{}_{\alpha}\Lambda^{\nu}{}_{\beta}g^{\alpha\beta}$. In the following we consider the "proper orthochronous Lorentz group" L^{\uparrow}_{+} that comprises all such Λ with the two constraints that det $\Lambda = +1$ and $\Lambda^0{}_0 > 0$. The group L^{\uparrow}_{+} consists of all rotations in space and "boosts", which relate two frames of reference with a non-vanishing relative velocity.

a) A boost with relative velocity $\vec{v} = (v^1, v^2, v^3)$ is described by the Λ matrix of the form

$$L(v^{1}, v^{2}, v^{3}) = \begin{pmatrix} \gamma & -v^{1}\gamma & -v^{2}\gamma & -v^{3}\gamma \\ -v^{1}\gamma & 1 + \frac{v^{1}v^{1}}{\vec{v}^{2}}(\gamma - 1) & \frac{v^{1}v^{2}}{\vec{v}^{2}}(\gamma - 1) & \frac{v^{1}v^{3}}{\vec{v}^{2}}(\gamma - 1) \\ -v^{2}\gamma & \frac{v^{2}v^{1}}{\vec{v}^{2}}(\gamma - 1) & 1 + \frac{v^{2}v^{2}}{\vec{v}^{2}}(\gamma - 1) & \frac{v^{2}v^{3}}{\vec{v}^{2}}(\gamma - 1) \\ -v^{3}\gamma & \frac{v^{3}v^{1}}{\vec{v}^{2}}(\gamma - 1) & \frac{v^{3}v^{2}}{\vec{v}^{2}}(\gamma - 1) & 1 + \frac{v^{3}v^{3}}{\vec{v}^{2}}(\gamma - 1) \end{pmatrix},$$

where $\gamma = 1/\sqrt{1 - \vec{v}^2}$. Calculate the boosted components x'^{μ} for the four-vectors $x_{\parallel} = (x^0, r\vec{e})$ and $x_{\perp} = (x^0, r\vec{e}_{\perp})$ whose directions in space are parallel and perpendicular to the direction $\vec{e} = \vec{v}/|\vec{v}|$ of the relative velocity, respectively, i.e. $\vec{e}_{\perp} \cdot \vec{e} = 0$.

- b) Show that the sign of the time-like component a^0 of any non-space-like four-vector a^{μ} (i.e. $a^2 \ge 0$) is invariant under all Lorentz transformations $\Lambda \in L^{\uparrow}_+$.
- c) Calculate $W = L_2(0, -v^2, 0)L_1(-v^1, 0, 0)L_2(0, v^2, 0)L_1(v^1, 0, 0)$ for small velocities v^k and keep terms up to quadratic order in products of components v^k . What kind of transformation is described by W?
- d) Show that the totally antisymmetric tensor

$$\epsilon^{\mu\nu\rho\sigma} = \begin{cases} +1 & \text{if } (\mu\nu\rho\sigma) = \text{even permutation of (0123),} \\ -1 & \text{if } (\mu\nu\rho\sigma) = \text{odd permutation of (0123),} \\ 0 & \text{otherwise.} \end{cases}$$

is an invariant tensor under all $\Lambda \in L^{\uparrow}_{+}$, i.e. $\epsilon^{\prime\mu\nu\rho\sigma} = \Lambda^{\mu}{}_{\alpha}\Lambda^{\nu}{}_{\beta}\Lambda^{\rho}{}_{\gamma}\Lambda^{\sigma}{}_{\delta}\epsilon^{\alpha\beta\gamma\delta}$.

e) Show that $d^{\mu} = \epsilon^{\mu\nu\rho\sigma}a_{\nu}b_{\rho}c_{\sigma}$ transforms like a four-vector under $\Lambda \in L^{\uparrow}_{+}$ if a^{μ} , b^{μ} , and c^{μ} are four-vectors.

Please turn over!

Exercise 1.2 Kinematics of a $1 \rightarrow 2$ particle decay (2 points)

A particle of mass M and four-momentum k^{μ} decays into two particles of masses m_i and four-momenta p_i^{μ} (i = 1, 2). The momenta obey their mass-shell conditions $k^2 = M^2$ and $p_i^2 = m_i^2$ and, in the centre-of-mass frame Σ , are given by

 $k^{\mu} = (M, \vec{0}), \qquad p_i^{\mu} = (E_i, |\vec{p}_i| \cos \phi_i \sin \theta_i, |\vec{p}_i| \sin \phi_i \sin \theta_i, |\vec{p}_i| \cos \theta_i).$

- a) What are the consequences of four-momentum conservation $k = p_1 + p_2$ for the energies E_i , for the absolute values $|\vec{p}_i|$ of the three-momenta and for the angles θ_i , ϕ_i ?
- b) Calculate E_i and $|\vec{p}_i|$ as functions of the masses M and m_i .
- c) The decaying particle is now considered in a frame Σ' in which the particle has the velocity β along the x^3 axis (c = 1). What is the relation between energies and angles in Σ' with the respective quantities in Σ ?
- d) For the special case $m_1 = m_2 = 0$ (e.g. decay into two photons) determine the angle θ' between the directions of flight of the decay products in Σ' (i.e. the angle between $\vec{p'_1}$ and $\vec{p'_2}$). What are the extremal values of θ' ? In particular, discuss the cases $\beta = 0$ and $\beta \to 1$.