Exercises to Group Theory for Physicists — Sheet 7

Prof. S. Dittmaier and Dr. P. Maierhöfer, Universität Freiburg, SS19

Exercise 7.1 Tensors of SU(3) and SO(3) (2 points)

a) Use the invariant symbols δ_j^i , ϵ^{ijk} , ϵ_{ijk} of SU(3) and symmetry properties to find the irreducible contributions of a rank-3 tensor T^{ijk} of SU(3) with 3 upper and no lower indices. What is the corresponding Clebsch-Gordan series?

Note: It is sufficient to give the irreducible contributions as tensors of lower rank, where appropriate.

b) How does the result change if we regard a tensor T^{ijk} of SO(3) instead? Explain (without performing the full calculation) what the contributions to the corresponding Clebsch-Gordan series are.

Exercise 7.2 Representations of SO(4) (3 points)

In the lecture we showed that SO(4) is locally isomorphic to $SU(2) \times SU(2)$. Furthermore, $SU(2) \times SU(2)$ is a universal cover of SO(4).

- a) Use your knowledge about SU(2) to construct representations of SO(4) from two irreducible representations of SU(2). What are the dimensions of those SO(4) representations?
- b) Show that these representations are irreducible.
- c) Find a factor group of $SU(2) \times SU(2)$ that is isomorphic to SO(4).

Exercise 7.3 The energy spectrum of the hydrogen atom (4 points)

The Hamiltonian H and the energy eigenvalues E_n corresponding to the eigenstates $|n, l, m\rangle$ of H, \vec{L}^2 , L_3 (\vec{L} is the angular momentum operator), of the hydrogen atom are given by

$$H|n,l,m\rangle = E_n|n,l,m\rangle, \qquad H = \frac{p^2}{2m} - \frac{k}{r}, \quad E_n = -\frac{R_\infty}{n^2}, \quad n \in \mathbb{N}_1,$$

$$\vec{L}^2|n,l,m\rangle = \hbar^2 l(l+1)|n,l,m\rangle, \qquad l \in \mathbb{N}_0 \text{ with } 0 \le l \le n-1, \qquad (1)$$

$$L_3|n,l,m\rangle = \hbar m|n,l,m\rangle, \qquad m \in \mathbb{Z} \text{ with } -l \le m \le l,$$

with k > 0 and $R_{\infty} = \frac{mk^2}{2\hbar^2}$. From classical mechanics we know that there exists a conserved vector

$$\vec{A}_{\rm cl.} = \frac{1}{m}\vec{L}\times\vec{p} + k\frac{\vec{x}}{r} \tag{2}$$

called Laplace-Runge-Lenz vector that points from the centre to the perihelion of the trajectory (this implies that fact that the bound trajectories in a r^{-1} potential are closed). In quantum mechanics we define the Laplace-Runge-Lenz operator

$$\vec{A} = \frac{1}{m}(\vec{L} \times \vec{p} - \vec{p} \times \vec{L}) + k\frac{\vec{x}}{r}$$
(3)

by symmetrisation so that the components $A_i = A_i^{\dagger}$, i = 1, 2, 3, are hermitian.

a) It can be shown that \vec{A} fulfils the commutator relations

$$[H, \vec{A}] = 0, \qquad [L_i, A_j] = i\epsilon_{ijk}A_k, \qquad [A_i, A_j] = i\epsilon_{ijk}\left(-\frac{2}{m}HL_k\right). \tag{4}$$

What is the symmetry generated by \vec{L} and \vec{A} and what is the expected degeneracy of the energy eigenvalues? Compare this to the observed degeneracy and the degeneracy induced by SO(3).

Hint: Introduce the operators $\vec{T}_{\pm} = \frac{1}{2}(\vec{L} \pm \vec{M})$ with $\vec{M} = \sqrt{-\frac{m}{2H}}\vec{A}$.

- b) Calculate $\vec{L} \cdot \vec{A}$ for the operators \vec{L} and \vec{A} .
- c) Express the relation from b) in terms of \vec{T}_{\pm} . What does this imply for the degrees of degeneracy?
- d) Express $\frac{1}{2}(\vec{L}^2 + \vec{M}^2)$ in terms of \vec{T}_{\pm} and use

$$\vec{A}^2 = \frac{2H}{m}(\vec{L}^2 + \hbar^2) + k^2 \tag{5}$$

to derive a formula for the energy eigenvalues.

Comment: Although the calculations are a bit tedious, we recommend to prove the commutator relations (4) and the formula (5) explicitly.