Exercises to Group Theory for Physicists — Sheet 4

Prof. S. Dittmaier and Dr. P. Maierhöfer, Universität Freiburg, SS19

Exercise 4.1 Real, pseudoreal, and complex representations (6 points)

In the lecture we showed that if a unitary, irreducible representation D of a finite group G acting on a vector space V is real or pseudoreal, i.e. $\exists S$ with $S^{\mathrm{T}} = \pm S$ so that $D^*(g) = SD(g)S^{-1} \forall g \in G$, then $x^{\mathrm{T}}Sy, x, y \in V$, is a bilinear invariant.

- a) Show that, conversely, if a bilinear invariant $x^{T}Sy$ exists with some non-vanishing matrix S, then D must be real or pseudoreal, i.e. that for complex D no such invariant exists.
- b) Show that for an arbitrary square matrix X of the same dimension as D and

$$S = \sum_{g} D(g)^{\mathrm{T}} X D(g), \qquad (1)$$

 $x^{\mathrm{T}}Sy$ is invariant under group action. What happens if the representation D is complex?

- c) Choose the matrix X in (1) as X^{mn} with components $(X^{mn})^{jk} = \delta^{mj} \delta^{nk}$. Use the resulting equation to calculate $\sum_g \chi(g^2)$, where $\chi(g^2)$ is the character of $D(g^2)$, in the case where representation D is complex.
- d) Proceed as in c), but in the case where D is a real or pseudoreal representation, i.e. $S^{\mathrm{T}} = \eta S$ with $\eta = +1$ rsp. $\eta = -1$ if the representation is real rsp. pseudoreal. To what does $\sum_{q} \chi(g^2)$ evaluate in these cases?
- e) Check if the 2-dimensional irreducible representations of the quaternionic group Q and of the symmetric group S_3 are real, pseudoreal, or complex (use the character tables given in the lecture).
- f) With the number of square roots σ_g of an element $g \in G$, i.e. the number of elements $f \in G : f^2 = g$, we can write

$$\sum_{g} \chi(g^2) = \sum_{g} \sigma_g \chi(g).$$
⁽²⁾

Use this and the results from c) and d) to derive a formula to calculate σ_g .

Hint: Use the character completeness relation.

Please turn over!

Exercise 4.2 Irreducible representations of the dihedral groups D_n (3 points)

According to Exercise 2.2, the 2×2 rotation matrices

$$r_k = \begin{pmatrix} \cos \phi_k & -\sin \phi_k \\ \sin \phi_k & \cos \phi_k \end{pmatrix}, \qquad \phi_k = \frac{2\pi k}{n}, \qquad k = 0, 1, \dots, n-1,$$
(3)

generate *n* reducible representations of the cyclic group $C_n = \langle r | r^n = e \rangle$. The similarity transformation $S = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix}$ reduces the generating elements to

$$S\begin{pmatrix}\cos\phi_k & -\sin\phi_k\\\sin\phi_k & \cos\phi_k\end{pmatrix}S^{-1} = \begin{pmatrix}e^{\mathrm{i}\phi_k} & 0\\0 & e^{-\mathrm{i}\phi_k}\end{pmatrix}.$$
(4)

a) As in Exercise 3.1, extend the group C_n by a second generating element p, so that

$$D_n = \langle r, p \, | \, r^n = p^2 = e, prp^{-1} = r^{-1} \rangle, \tag{5}$$

but this time for all n generators r_k given in (3), yielding n two-dimensional representations. Apply the similarity transformation S to p. For which of the r_k are the generated representations irreducible? Distinguish the cases of n even and n odd.

b) Which of the 2-dimensional representations are inequivalent?

Hint: It is sufficient to restrict the similarity transformations to those that leave the simultaneously diagonalisable matrices diagonal (why?).

c) Show that, together with the 1-dimensional irreducible representations found in Exercise 3.1, these are all irreducible representations of D_n .