Exercises to Group Theory for Physicists — Sheet 2

Prof. S. Dittmaier and Dr. P. Maierhöfer, Universität Freiburg, SS19

Exercise 2.1 Galilei transformations of a qm. one-particle system (6 points)

The group of genuine Galilei transformations (without rotations and translations) is a 3-dimensional Lie group generated by the operators

$$\vec{G} = \frac{1}{\hbar} \left(\hat{\vec{p}} t - m\hat{\vec{x}} \right). \tag{1}$$

For the system of a point particle, $\hat{\vec{x}}$ and $\hat{\vec{p}}$ are the usual position and momentum operators. The roles of the parameters m and t will become clear in the following. The unitary symmetry operators $U(\vec{v})$ acting on the one-particle Hilbert space of states $|\psi\rangle$ are given by

$$U(\vec{v}) = \exp\left\{-\mathrm{i}\vec{G}\cdot\vec{v}\right\}$$
(2)

with the velocity \vec{v} , defining boosts connecting two different frames of inertia.

- a) Calculate the commutators $[\hat{x}_a, G_b]$, $[\hat{p}_a, G_b]$, and $[G_a, G_b]$. Is the group generated by \vec{G} abelian or nonabelian?
- b) Show that $U(\vec{v})$ can be written in the form

$$U(\vec{v}) = \exp\left\{\frac{\mathrm{i}}{\hbar}m\hat{\vec{x}}\cdot\vec{v}\right\} \exp\left\{-\frac{\mathrm{i}}{\hbar}t\hat{\vec{p}}\cdot\vec{v}\right\} \,\mathrm{e}^{\mathrm{i}\chi(v)},\tag{3}$$

with some real function $\chi(v)$, and determine the function $\chi(v)$ explicitly.

- c) Calculate $[\hat{p}_a, U(\vec{v})]$ and show that the state $U(\vec{v})|\vec{p}\rangle$ is a momentum eigenstate if $|\vec{p}\rangle$ is a momentum eigenstate with momentum \vec{p} . What is the role of m?
- d) Determine the phase factor in the relation $|\vec{p}'\rangle = e^{-i\phi(\vec{p},\vec{v})} U(\vec{v}) |\vec{p}\rangle$, where the momentum eigenstates are normalized according to $\langle \vec{x} | \vec{p} \rangle = e^{i\vec{p}\cdot\vec{x}/\hbar}$ as usual.
- e) Calculate $[\hat{x}_a, U(\vec{v})]$ and show that the state $U(\vec{v})|\vec{x}\rangle$ is a position eigenstate if $|\vec{x}\rangle$ is a position eigenstate with position \vec{x} . What is the role of t?
- f) Given a state $|\psi\rangle$ with wave function $\psi(\vec{x}) = \langle \vec{x} | \psi \rangle$, determine the wave function $\psi'(\vec{x}) = \langle \vec{x} | \psi' \rangle$ for the transformed state $|\psi'\rangle = U(\vec{v}) |\psi\rangle$ in terms of $\psi(\vec{x})$.

Please turn over!

Exercise 2.2 Discrete rotations in two dimensions – the cyclic groups (3 points)

For a given natural number n, consider the group of discrete rotations about integer multiples of the angle $\frac{2\pi}{n}$ in two dimensions, which are represented by the matrices

$$R(\phi_k) = \begin{pmatrix} \cos \phi_k & -\sin \phi_k \\ \sin \phi_k & \cos \phi_k \end{pmatrix}, \qquad \phi_k = \frac{2\pi k}{n} \qquad k = 0, 1, \dots, n-1.$$
(4)

These matrices define a two-dimensional representation of the cyclic group C_n .

- a) Determine the similarity transformation that reduces the representation (4) to two irreducible representations.
- b) The regular representation of C_3 (and analogously for C_n) is defined by the following three matrices:

$$D(e) = \mathbb{1}, \qquad D(g) = \begin{pmatrix} 0 & 0 & 1\\ 1 & 0 & 0\\ 0 & 1 & 0 \end{pmatrix}, \qquad D(g^2) = \begin{pmatrix} 0 & 1 & 0\\ 0 & 0 & 1\\ 1 & 0 & 0 \end{pmatrix}, \tag{5}$$

where g is the *generating element* of the group. Similarly to a) fully reduce this representation.

Hint: Introduce $\epsilon = e^{2\pi i/3}$, with $\epsilon^2 = \epsilon^*$, $1 + \epsilon + \epsilon^2 = 0$.

c) C_n possesses *n* one-dimensional inequivalent representations. Guess them from the pattern observed for C_3 in b).