Exercises to Advanced Quantum Mechanics Sheet 13

- Prof. S. Dittmaier, Dr. H. Rzehak, Universität Freiburg, WS14/15

Exercise 13.1 Resonance scattering (2 bonus points)

Consider the scattering of a particle (mass M) off some potential that produces a narrow resonance (width $\Gamma \ll E_{r}$) at an energy E_{r} in the partial wave with quantum number $l=l_{0}$. In the following we are only interested in energies E close to the resonance $\left(\left|E-E_{r}\right| \lesssim \Gamma\right)$, where the scattering phase $\delta_{l_{0}}(E)$ consists of a smoothly varying part, which can be approximated by a constant $\bar{\delta}_{l_{0}}$, and the resonance part $\Delta \delta_{l_{0}}^{r}$ parametrized by

$$
\tan \Delta \delta_{l_{0}}^{r}=\frac{\Gamma}{2\left(E_{r}-E\right)}
$$

Derive the total resonance cross section $\sigma_{l_{0}}(E)$ for generic values of $\bar{\delta}_{l_{0}}$ and sketch the shape of $\sigma_{l_{0}}(E)$ for $\bar{\delta}_{l_{0}}=0, \pi / 2, \pi, 3 \pi / 2$.
Low-energy electron scattering off noble gases shows cross sections that are extremely suppressed at certain energies (Ramsauer-Townsend effect). What do you conclude on $\bar{\delta}_{l_{0}}$ for those resonances?

Exercise 13.2 Probability flux in potential scattering (3 bonus points)

Asymptotically for large $r=|\vec{x}|$, a scattering wave function behaves as

$$
\psi(\vec{x}) \underset{r \rightarrow \infty}{\widetilde{ }} \psi_{\vec{k}}(\vec{x})+\psi_{\mathrm{sc}}(\vec{x}), \quad \psi_{\vec{k}}(\vec{x})=\mathrm{e}^{\mathrm{i} \vec{k} \vec{x}}, \quad \psi_{\mathrm{sc}}(\vec{x})=\frac{\mathrm{e}^{i k r}}{r} f_{k}(\Omega)
$$

where $\hbar \vec{k}$ is the momentum of the incoming particle and Ω the solid angle of \vec{x}.
a) Prove that the plane wave has the asymptotic behaviour

$$
\mathrm{e}^{\mathrm{i} \vec{k} \vec{x}} \widetilde{r \rightarrow \infty} \frac{2 \pi}{\mathrm{i} k r}\left[\delta\left(\Omega-\Omega_{\vec{k}}\right) \mathrm{e}^{i k r}-\delta\left(\Omega+\Omega_{\vec{k}}\right) \mathrm{e}^{-i k r}\right]
$$

where $\Omega_{\vec{k}}$ the solid angle of \vec{k} and the angular delta functions are defined in terms of the corresponding polar and azimuthal angles θ and ϕ as

$$
\delta\left(\Omega-\Omega_{\vec{k}}\right)=\delta\left(\cos \theta-\cos \theta_{\vec{k}}\right) \delta\left(\phi-\phi_{\vec{k}}\right)
$$

Hint: Recall Exercises 1.3 and 11.3 and use various properties of the spherical harmonics.
b) Calculate the particle flux through a sphere of a large radius $R(k R \gg 1)$ originating from the wave functions $\psi_{\vec{k}}$ and $\psi_{\text {sc }}$ alone.
c) Calculate the total particle flux F through the large sphere originating from the full wave functions $\psi=\psi_{\vec{k}}+\psi_{\text {sc }}$. Which relation do you get by demanding $F=0$?

