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Exercise 7.1 Landau levels reloaded (4 points)

We reconsider Exercise 6.1, where an electron (electric charge q = −e) is put into a

homogeneous magnetic field aligned along the x3 axis ( ~B = ∇ × ~A = B~e3 with the

convenient choice ~A = 1
2
~B × ~x for the vector potential ~A). Our aim is to construct qm.

states that are simultaneous eigenstates of the Hamiltonian Ĥ and the component L̂3 of
orbital angular momentum (possible because [Ĥ, L̂3] = 0). Since the electron spin and the
movement in the x3 direction are not touched by this issue, we ignore spin effects and the
x3-dependence in the following.

a) The part Ĥ12 of the Hamiltonian relevant for the movement in the x1-x2-plane can
be written as

Ĥ12 = ~ω
(
a†a+

1

2

)
, ω =

eB

m
, (1)

with shift operators

a =
1√

2~ωm

(
Π̂1 − iΠ̂2

)
(2)

and a† constructed from Π̂j = p̂j + eAj(~̂x), j = 1, 2. Verify the form (1) of Ĥ12 and
that the operators a, a† obey the usual commutator relations of a harmonic oscillator.

b) Calculate [L̂3, a
(†)] and visualize the effects of the operators a, a†, L̂3 on states |n,m3〉

in the n-m3-plane, where n is defined as in Exercise 6.1 and ~m3 is the eigenvalue
of L̂3.

c) As for the usual harmonic oscillator, the states |n,m3〉 for n > 0 can be generated
from the ground state |0, µ〉 with n = 0 and some eigenvalue ~µ of L̂3:

|n,m3〉 =
(a†)n√
n!
|0, µ〉, n ∈ N0.

How are m3 and µ related?

d) Derive the position space wave function ψn,m3(~x) = 〈~x|n,m3〉 of the ground states
|0,m3〉 and give a prescription to calculate ψn,m3(~x) for n > 0. Which restrictions
on allowed (n,m3) values result from demanding normalizable energy eigenstates?

[Hint: Cylindrical coordinates are useful: ~x = (ρ cosφ, ρ sinφ, x3)
T .]

Please turn over!



Exercise 7.2 Addition of angular momenta – D(1/2) ⊗D(1/2) ⊗D(1/2) (3 points)

Consider a quantum-mechanical system consisting of three spin-1
2

particles, ignoring all
degrees of freedom other than spin. Labelling the respective spin parts of the one-particle
states by | ↑〉 ≡ |1

2
, 1
2
〉k, | ↓〉 ≡ |12 ,−

1
2
〉k for particle k = 1, 2, 3, construct linear combina-

tions of the product states | ↑↑↑〉 ≡ | ↑〉1| ↑〉2| ↑〉3, etc. that are simultaneous eigenstates

of ~J 2 and J3, where ~J = ~S1 + ~S2 + ~S3 is the total spin of the system. How is the product
representation D(1/2) ⊗ D(1/2) ⊗ D(1/2) expressed in terms of a direct sum of irreducible
representations?

Exercise 7.3 Recursion relation for Clebsch–Gordan coefficients (2 points)

We consider a quantum-mechanical system consisting of two parts that are each described
by angular momentum eigenstates |jk,mk〉 (k = 1, 2) of ~J 2

k and Jk,3 of the respective

angular momentum operators ~Jk:

~J 2
k |jk,mk〉 = ~2jk(jk + 1)|jk,mk〉, jk = 0, 1

2
, 1, . . . ,

Jk,3|jk,mk〉 = ~mk|jk,mk〉, mk = −jk,−jk + 1, . . . , jk.

The transition from the basis of product states |j1,m1; j2,m2〉 ≡ |j1,m1〉|j2,m2〉 to the

basis |j,m〉 of eigenstates of ~J 2 and J3 of the total angular momentum ~J is described in
terms of Clebsch–Gordan coefficients 〈j1,m1; j2,m2|j,m〉:

|j,m〉 =
∑

m1,m2
m=m1+m2

|j1,m1; j2,m2〉 〈j1,m1; j2,m2|j,m〉.

With the help of the shift operators J± = J1±+J2± derive the following recursion relations
for the Clebsch–Gordan coefficients:√

j(j + 1)−m(m− 1) 〈j1,m1; j2,m2|j,m− 1〉
=

√
j1(j1 + 1)−m1(m1 + 1) 〈j1,m1 + 1; j2,m2|j,m〉

+
√
j2(j2 + 1)−m2(m2 + 1) 〈j1,m1; j2,m2 + 1|j,m〉.


