Exercise 7.1 Landau levels reloaded (4 points)

We reconsider Exercise 6.1, where an electron (electric charge q = -e) is put into a homogeneous magnetic field aligned along the x_3 axis ($\vec{B} = \nabla \times \vec{A} = B\vec{e}_3$ with the convenient choice $\vec{A} = \frac{1}{2}\vec{B} \times \vec{x}$ for the vector potential \vec{A}). Our aim is to construct qm. states that are simultaneous eigenstates of the Hamiltonian \hat{H} and the component \hat{L}_3 of orbital angular momentum (possible because $[\hat{H}, \hat{L}_3] = 0$). Since the electron spin and the movement in the x_3 direction are not touched by this issue, we ignore spin effects and the x_3 -dependence in the following.

a) The part \hat{H}_{12} of the Hamiltonian relevant for the movement in the x_1 - x_2 -plane can be written as

$$\hat{H}_{12} = \hbar\omega \left(a^{\dagger}a + \frac{1}{2} \right), \quad \omega = \frac{eB}{m},$$
(1)

with shift operators

$$a = \frac{1}{\sqrt{2\hbar\omega m}} \left(\hat{\Pi}_1 - i\hat{\Pi}_2\right) \tag{2}$$

and a^{\dagger} constructed from $\hat{\Pi}_j = \hat{p}_j + eA_j(\hat{\vec{x}}), j = 1, 2$. Verify the form (1) of \hat{H}_{12} and that the operators a, a^{\dagger} obey the usual commutator relations of a harmonic oscillator.

- b) Calculate $[\hat{L}_3, a^{(\dagger)}]$ and visualize the effects of the operators $a, a^{\dagger}, \hat{L}_3$ on states $|n, m_3\rangle$ in the *n*-*m*₃-plane, where *n* is defined as in Exercise 6.1 and $\hbar m_3$ is the eigenvalue of \hat{L}_3 .
- c) As for the usual harmonic oscillator, the states $|n, m_3\rangle$ for n > 0 can be generated from the ground state $|0, \mu\rangle$ with n = 0 and some eigenvalue $\hbar\mu$ of \hat{L}_3 :

$$|n,m_3\rangle = \frac{(a^{\dagger})^n}{\sqrt{n!}}|0,\mu\rangle, \qquad n \in \mathbf{N}_0.$$

How are m_3 and μ related?

d) Derive the position space wave function $\psi_{n,m_3}(\vec{x}) = \langle \vec{x}|n,m_3 \rangle$ of the ground states $|0,m_3\rangle$ and give a prescription to calculate $\psi_{n,m_3}(\vec{x})$ for n > 0. Which restrictions on allowed (n,m_3) values result from demanding normalizable energy eigenstates? [Hint: Cylindrical coordinates are useful: $\vec{x} = (\rho \cos \phi, \rho \sin \phi, x_3)^T$.]

Exercise 7.2 Addition of angular momenta $-D^{(1/2)} \otimes D^{(1/2)} \otimes D^{(1/2)}$ (3 points)

Consider a quantum-mechanical system consisting of three spin- $\frac{1}{2}$ particles, ignoring all degrees of freedom other than spin. Labelling the respective spin parts of the one-particle states by $|\uparrow\rangle \equiv |\frac{1}{2}, \frac{1}{2}\rangle_k, |\downarrow\rangle \equiv |\frac{1}{2}, -\frac{1}{2}\rangle_k$ for particle k = 1, 2, 3, construct linear combinations of the product states $|\uparrow\uparrow\uparrow\rangle \equiv |\uparrow\rangle_1|\uparrow\rangle_2|\uparrow\rangle_3$, etc. that are simultaneous eigenstates of \vec{J}^2 and J_3 , where $\vec{J} = \vec{S}_1 + \vec{S}_2 + \vec{S}_3$ is the total spin of the system. How is the product representation $D^{(1/2)} \otimes D^{(1/2)} \otimes D^{(1/2)}$ expressed in terms of a direct sum of irreducible representations?

Exercise 7.3 Recursion relation for Clebsch–Gordan coefficients (2 points)

We consider a quantum-mechanical system consisting of two parts that are each described by angular momentum eigenstates $|j_k, m_k\rangle$ (k = 1, 2) of \vec{J}_k^2 and $J_{k,3}$ of the respective angular momentum operators \vec{J}_k :

$$\bar{J}_{k}^{2}|j_{k},m_{k}\rangle = \hbar^{2}j_{k}(j_{k}+1)|j_{k},m_{k}\rangle, \qquad j_{k}=0,\frac{1}{2},1,\ldots, J_{k,3}|j_{k},m_{k}\rangle = \hbar m_{k}|j_{k},m_{k}\rangle, \qquad m_{k}=-j_{k},-j_{k}+1,\ldots,j_{k}.$$

The transition from the basis of product states $|j_1, m_1; j_2, m_2\rangle \equiv |j_1, m_1\rangle |j_2, m_2\rangle$ to the basis $|j, m\rangle$ of eigenstates of \vec{J}^2 and J_3 of the total angular momentum \vec{J} is described in terms of Clebsch–Gordan coefficients $\langle j_1, m_1; j_2, m_2 | j, m \rangle$:

$$|j,m\rangle = \sum_{\substack{m_1,m_2\\m=m_1+m_2}} |j_1,m_1;j_2,m_2\rangle \langle j_1,m_1;j_2,m_2|j,m\rangle$$

With the help of the shift operators $J_{\pm} = J_{1\pm} + J_{2\pm}$ derive the following recursion relations for the Clebsch–Gordan coefficients:

$$\begin{split} \sqrt{j(j+1)} &- m(m-1) \langle j_1, m_1; j_2, m_2 | j, m-1 \rangle \\ &= \sqrt{j_1(j_1+1) - m_1(m_1+1)} \langle j_1, m_1 + 1; j_2, m_2 | j, m \rangle \\ &+ \sqrt{j_2(j_2+1) - m_2(m_2+1)} \langle j_1, m_1; j_2, m_2 + 1 | j, m \rangle. \end{split}$$