Exercises to Advanced Quantum Mechanics	Sheet 10	
 Prof. S. Dittmaier, Dr. H. Rzehak, Universität Freiburg,	WS14/15	

Exercise 10.1 Interaction picture and time-dependent perturbation theory (3 points)

We consider a quantum-mechanical system that is described by an "unperturbed" Hamiltonian \hat{H}_0 , which is time independent, and a time-dependent perturbation $\hat{H}'(t)$. The eigenstates $|\phi_n\rangle$ and corresponding eigenvalues E_n of \hat{H}_0 are supposed to be known.

a) A Schrödinger state $|\psi(t)\rangle$ at any time t can be expressed in terms of a linear combination of stationary states $|\phi_n(t)\rangle = \exp\{-iE_n(t-t_0)/\hbar\}|\phi_n\rangle$ of the unperturbed Hamiltonian \hat{H}_0 , i.e.

$$|\psi(t)\rangle = \sum_{n} c_n(t) |\phi_n(t)\rangle,$$

with time-dependent coefficients $c_n(t)$ and t_0 being a fixed reference time. Express the corresponding state $|\psi(t)\rangle_I$ in the interaction picture in terms of the coefficients $c_n(t)$ and the states $|\phi_n\rangle$.

- b) Derive a set of first-order differential equations for the time evolution of all $c_n(t)$ from Schrödinger's equation, in which matrix elements $H'_{nm}(t) = \langle \phi_n | \hat{H}'(t) | \phi_m \rangle$ of the perturbation are the only unknown quantities apart from the $c_n(t)$'s.
- c) Assuming $H'_{nm}(t)$ as small quantities, describe an iterative way to solve the equations for $c_n(t)$ with the starting condition $c_n(t_0) = \delta_{nj}$.

Exercise 10.2 Time-dependent perturbation theory to second order (2 points)

We consider the same system as in the previous exercise, using the same definitions of H_0 , $\hat{H}'(t)$, $|\phi_n\rangle$, and E_n . The transition probability for a state $|\psi(t)\rangle$ with $|\psi(t_0)\rangle = |\phi_i\rangle$ for a given time t_0 to a state $|\phi_f\rangle$ at some later time t is given by

$$W_{if} = |\langle \phi_f | U_I(t, t_0) | \phi_i \rangle|^2,$$

where

$$U_I(t,t_0) = \operatorname{Texp}\left\{-\frac{\mathrm{i}}{\hbar}\int_{t_0}^t \mathrm{d}t'\,\hat{H}_I'(t')\right\}$$

is the time-evolution operator in the interaction picture, represented by a time-ordered exponential function, and $\hat{H}'_{I}(t)$ is the perturbation in the interaction picture.

a) Show that the probability W_{ii} that the system is found at time t in the same state $|\phi_i\rangle$ as at time t_0 is given by

$$W_{ii} = 1 + \frac{1}{\hbar^2} \left(\int_{t_0}^t \mathrm{d}t_1 \langle \phi_i | \hat{H}'_I(t_1) | \phi_i \rangle \right)^2 - \frac{1}{\hbar^2} \int_{t_0}^t \mathrm{d}t_1 \int_{t_0}^t \mathrm{d}t_2 \langle \phi_i | \hat{H}'_I(t_1) \hat{H}'_I(t_2) | \phi_i \rangle + \dots$$

which is valid up to quadratic order in the perturbation.

b) Calculate W_{if} for $f \neq i$ up to second order as well and prove the unitarity relation $\sum_{f} W_{if} = 1$ upon using the result for W_{ii} from a).

The ground state ϕ_0 of a hydrogen atom is subjected to a time-dependent perturbation of the form

$$\hat{H}'(t) = A\cos(k\hat{x}_3 - \omega t),$$

where A, k, and ω are real positive constants. Our aim is to approximately calculate the transition rate of the atom to an ionized state in which the electron is emitted with a momentum \vec{p} . We will approximate the (stationary) final state of the electron by a free-particle wave function $\psi_{\vec{p}}(\vec{x}) \propto \exp\{-i\vec{p} \cdot \vec{x}/\hbar\}$. We neglect spin effects.

- a) Since $\psi_{\vec{p}}$ is not normalizable in full space, we temporarily consider the electron confined to a cube of edge length L with periodic boundary conditions, where L is much larger than Bohr's atomic radius. Calculate the density $\rho(E_p)$ of free-particle states in the cube, where $E_p = \vec{p}^2/(2m)$ is the energy of the free electron, and normalize $\psi_{\vec{p}}$ to the volume of the cube.
- b) Calculate the transition matrix element $\langle \psi_{\vec{p}} | e^{ik\hat{x}_3} | \phi_0 \rangle$ in the asymptotic limit $L \to \infty$.
- c) Using the general result derived in the lecture for periodic perturbations to first order, derive the transition rate dR for an electron that is emitted into the direction of \vec{p} within the solid angle $d\Omega$. Discuss the angular dependence of the rate.