Exercise 5.1 Momentum of the quantized free scalar field (1.5 points)

Energy P^0 and momentum **P** of a free, real scalar field $\phi(x)$ are determined by the energy-momentum tensor via

$$P^{0} = \int d^{3}\mathbf{y} \frac{1}{2} \left\{ \pi(y)^{2} + [\nabla\phi(y)]^{2} + m^{2}\phi(y)^{2} \right\}, \qquad \mathbf{P} = -\int d^{3}\mathbf{y} \,\pi(y) [\nabla\phi(y)],$$

where $\pi(x) = \dot{\phi}(x)$ is the canonical conjugate operator to the field operator $\phi(x)$.

a) Using the canonical commutator relations show

$$[\phi(x), P^{\mu}] = i\partial^{\mu}\phi(x).$$

- b) How does P^{μ} act on the one-particle wave function $\varphi_{\mathbf{p}}(t, \mathbf{x}) = \langle 0 | \phi(t, \mathbf{x}) | \mathbf{p} \rangle$ with fixed momentum \mathbf{p} , where the action of an operator A on $\varphi_{\mathbf{p}}(t, \mathbf{x})$ is defined by $A\varphi_{\mathbf{p}}(t, \mathbf{x}) = \langle 0 | \phi(t, \mathbf{x}) A | \mathbf{p} \rangle$.
- c) Employing a), derive the following identity for translations by a constant 4-vector a^{μ} :

$$\exp\{ia_{\mu}P^{\mu}\}\phi(x)\,\exp\{-ia_{\nu}P^{\nu}\}=\phi(x+a).$$

Exercise 5.2 Identities of the scalar field operator (1 point)

Consider the field operator $\phi(x)$ of the free, real Klein-Gordon field.

a) Show that

$$[\phi(x),\phi(y)] = \int d\tilde{k} \left[e^{-ik(x-y)} - e^{+ik(x-y)} \right]$$

and argue why $[\phi(x), \phi(y)] = 0$ for $(x - y)^2 < 0$, as demanded by causality.

b) Proof the relation between time ordering and normal ordering:

$$T [\phi(x)\phi(y)] =: \phi(x)\phi(y): + \langle 0 | T [\phi(x)\phi(y)] | 0 \rangle.$$

Please turn over!

Exercise 5.3 Charge operator of the free, complex scalar field (0.5 points)

Consider the field operator $\phi(x)$ of the free, complex Klein-Gordon field describing a spin-0 boson of mass m and electric charge q. The plane-wave expansion of $\phi(x)$ is given by

$$\phi(x) = \int d\tilde{p} \left[a(\mathbf{p}) e^{-ipx} + b^{\dagger}(\mathbf{p}) e^{ipx} \right],$$

where $a(\mathbf{p})$, $a^{\dagger}(\mathbf{p})$ are the annihilation and creation operators for the particle, respectively, and likewise $b(\mathbf{p})$, $b^{\dagger}(\mathbf{p})$ for the corresponding antiparticle. Express the charge operator

$$Q = \int d^3 \mathbf{x} \, iq \, : \left[\phi^{\dagger} (\partial_0 \phi) - (\partial_0 \phi)^{\dagger} \phi \right] :$$

in terms of the annihilation and creation operators of the momentum eigenstates.